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Abstract. We analyze the effect of a colored non Gaussian noise on a model of a random walker moving
along a ratchet potential. Such a model was motivated by the transport properties of motor proteins,
like kinesin and myosin. Previous studies have been realized assuming white noises. However, for real
situations, in general we could expect that those noises be correlated and non Gaussian. Among other
aspects, in addition to a maximum in the current as the noise intensity is varied, we have also found
another optimal value of the current when departing from Gaussian behavior. We show the relevant effects
that arise when departing from Gaussian behavior, particularly related to current’s enhancement, and
discuss its relevance for both biological and technological situations.

PACS. 05.40.Jc Brownian motion – 82.20.Uv Stochastic theories of rate constants – 05.40.-a Fluctuation
phenomena, random processes, noise, and Brownian motion

1 Introduction

Noise induced transport by Brownian motors or “ratch-
ets” has attracted the attention of an increasing number
of researchers due to its biological interest as well as its
potential technological applications. Since the pioneering
works, besides the built-in ratchet-like bias and correlated
fluctuations, several different aspects have been studied,
such as tilting [1,2] and pulsating [3] potentials, velocity
inversions [1,4], etc. There are relevant reviews [5,6] indi-
cating the biological and/or technological motivations for
the study of ratchets as well as showing the state of the
art.

Among other aspects, ratchets has been used to ex-
plain the unidirectional transport of molecular motors
within a biological realm [5,6]. Among the different mo-
tor proteins, kinesin has attracted considerable attention
motivated by experimental results in which the dynami-
cal details of its motion can be measured [7–9]. Kinesin is
a protein with two heads that performs a walk along the
microtubule inside cells. Motivated by these experimental
results, several researchers have introduced diverse mod-
els in order to understand the particular form of walking
of kinesin [10]. Usually those models consider a walker
moving along an asymmetric ratchet potential mediated
by noise. This walker has two feet that are represented
by two particles nonlinearly coupled through a bistable
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potential. Among those models, there is a recent one in-
troduced in [11,12] including all the above indicated in-
gredients, where the walker moves along a track formed
by an asymmetric potential, being subjected to two in-
dependent white noise sources acting on each of the two
particles and to a common external harmonic force. It was
observed that the current J as function of noise intensity
Dw presents a maximum, conforming another example of
the constructive role of noise.

Recent studies on the effect of a non Gaussian noise
on several noise induced phenomena, have shown the ex-
istence of strong effects on the system‘s response. In those
studies, opposing to the most usual cases that only con-
sider Gaussian white noises, such an effect was analyzed
in stochastic resonance, noise induced transitions, “stan-
dard” ratchets, etc [13–17]. This form of noise was mo-
tivated by the nonextensive statistical mechanics [18,19].
In this work we want to analyze the effect of this form of
colored and non Gaussian noise over the kinesin ratchet
model introduced in references [11,12]. For this purpose,
we used a mean field approximation and exploited a re-
cently developed technique [17]. Through the variation of
a parameter q, this form of noise offers the possibility of
analyzing the departure from Gaussian behavior (corre-
sponding to q = 1). Since subtle change of environment
conditions can produce drastic changes in biological pro-
cess, such effects could be very relevant. It is worth here
indicating that a related mean field approximation was
introduced in [20].
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The organization of the paper is as follows. In the next
Section we show the mean-field approximation and how
reliable it is, based on the good agreement with known
results for the Gaussian case. The third Section presents
the statistical properties of the non Gaussian noise, and
the form of the current that results after applying the ef-
fective Markovian approximation in the present problem.
In the following Section we present the results when we
depart from the Gaussian behavior, that is varying the
parameter q. Finally, in the last Section we present some
conclusions.

2 The mean-field approximation
and its accuracy: Gaussian case

The stochastic dimensionless differential equations for the
two particles in the overdamped regime, whose coordi-
nates are indicated by x and y, are [11]

ẋ = −∂xV (x) − ∂xVb(x − y) +
√

2Dwξ1(t) + A sin Ωt,

ẏ = −∂yV (y) − ∂yVb(x − y) +
√

2Dwξ2(t) + A sin Ωt,

where V (x) is the dimensionless ratchet potential

V (x) = C+UR [sin(2π(x−x0))−0.25 sin(4π(x−x0))]. (1)

The constant C = UR[sin(2πx0)−0.25 sin(4πx0)] was cho-
sen in such a way that V (0) = 0. The constant x0 is in-
troduced in order to center the minima of the periodic
potential on integer values. The dimensionless amplitude
of the ratchet potential is indicated by UR.

The dimensionless bistable potential Vb(x − y), that
represents the nonlinear coupling between the two parti-
cles, is given by

Vb(x − y) = Ub

[
1 +

(x − y)4

l4
− 2

(x − y)2

l2

]
, (2)

where Ub is the dimensionless amplitude of this bistable
potential and 2l is the distance between the two minima.

In the original model, it is assumed that ξ1(t) and ξ2(t)
are Gaussian white noises with zero mean and correlation
〈ξi(t)ξi(t′)〉 = 2Dwδi,jδ(t − t′), with Dw the intensity of
the statistically independent noises. In our model, as indi-
cated at the introduction, we assume they are non Gaus-
sian colored noises, with characteristics that we will briefly
indicated later. Clearly, the model also considers an exter-
nal harmonic force.

In [12] this model was analytically solved. However,
in order to consider the non Gaussian colored noise case,
we need to introduce a different approach. For that pur-
pose, we consider a mean field approximation (MFA) [21].
For the present case, such a MFA consist in the following
approximation for Vb(x − y)

Vb(x − M) = Ub

[
1 +

(x − M)4

l4
− 2

(x − M)2

l2

]
, (3)

with M = 〈y〉, and clearly we have 〈x〉 = 〈y〉. After ap-
plying the MFA, the equations for both variables x and y

Fig. 1. The bistable potential Vb vs. x. The continuous line
corresponds to the exact form of the potential, while the
dashed line is for the approximate one. The parameters are
Ub = 0.2512 and l = 1.

results to be of the same form. Hence, we can reduce the
problem to a single equation describing the model system

ẋ = −∂xVeff (x, M, t) +
√

2Dwξ(t), (4)

where Veff (x, M, t) = V (x) + Vb(x − M) − xA sin Ωt.
In order to test the MFA, we start analyzing the Gaus-

sian white case, and show that it gives similar qualitative
results than the numerical simulations and the analytical
solution for the original model [11,12]. Hence, in equa-
tion (4), we start assuming that ξ(t) is a Gaussian white
noise with the same behavior than the ξi(t)’s.

Considering an adiabatical approximation in order
to decouple the external harmonic force from the rest,
the corresponding Fokker-Planck equation can be solved
assuming periodic boundary conditions. Even though
Veff (x, M, t) is non periodic [due to Vb(x − M) being non
periodic], we can still assume such a periodic behavior
since both feet are never too far away from each other,
the strong slope of the attractive potential preventing it
to occur. In Figure 1 it is shown Vb(x) vs. x with and
without the indicated approximation. In Figure 2 we show
Veff (x) vs. x, again with and without the approximation.
It is apparent that the curves looks quite alike.

Considering the adiabatical approximation, the corre-
sponding stationary solution of the Fokker-Planck equa-
tion is [22]

P st(x, M) =
H(x)

N
√

2Dw

e−Veff (x,M)/Dw , (5)

with

H(x) =
1√
2Dw

∫ x+L

x

du eVeff (u,M)/Dw , (6)

N a normalization constant, and L = 2π the period.
Hence, numerically solving

∫ L/2

−L/2

dxxP st(x, M) = M = 〈x〉 (7)
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Fig. 2. Effective potential Veff vs. x. The continuous line cor-
responds to the exact form of the potential, while the dashed
line is for the approximate one. The parameters are A = 1,
l = 1, Ur = 0.16, Ub = 0.2512 and t = 0.

we can obtain the current J(t) [22] as

J(t) =
1

2N

[
1 − e(Veff (L)−Veff (0))/Dw

]
, (8)

and the net current is obtained as

J =
1
T

∫ T

0

J(t) dt, (9)

with T = 2π
Ω .

In order to check these results in Figure 3 we depict J
vs. Dw. The curve presents a maximum for an “optimal”
value of the noise intensity, which is qualitatively similar
to the one obtained in [11,12]. With the support offered
by this agreement, we are now in position to use this same
approach for the non Gaussian colored noise case.

3 Non Gaussian noise case

3.1 Statistical properties of the non Gaussian noise

We consider now the non Gaussian colored noise case as
in [13]. Hence, in equation (4) ξ(t) is a noise with a dy-
namics described by the following Langevin equation

˙ξ(t) = −1
τ

d

dξ)
Vq(ξ) +

1
τ

η(t), (10)

with η(t) a white Gaussian noise, and

Vq(ξ) =
Dw

τ(q − 1)
ln

[

1 +
τ

Dw(q − 1) ξ2

2

]

. (11)

For q = 1, the process ξ coincides with the Ornstein-
Uhlenbeck (OU) one (with a correlation time equal to

Fig. 3. Net current J for a Gaussian white noise, as function
of Dw. The values of parameters are A = 1, l = 1, Ur = 0.16
and Ub = 0.2512.

τ), while for q �= 1 it departs from the Gaussian be-
havior. For q < 1 the stationary probability distribu-
tion (spd) has a bounded support, with a cut-off given
by ‖ξ‖ = ω ≡ [(1 − q)τ/(2Dw)]−

1
2 , with a form given by

Pq(ξ) =
1
Zq

[
1 − (

ξ

ω
)2

] 1
1−q

, (12)

for ‖ξ‖ < ω and zero for ‖ξ‖ > ω (Zq is a normalization
constant). Within the range 1 < q < 3, the spd is given by

Pq(ξ) =
1
Zq

[
1 +

τ(q − 1)ξ2

2Dw

] 1
1−q

, (13)

for −∞ < ξ < ∞, and decays as a power law (that is,
slower than a Gaussian distribution) for ξ → ∞. Finally,
for q > 3, this distribution can not be normalized. Note
that keeping Dw constant, when increasing q the disper-
sion of the distribution also increases. In [13] the second
moment of the distribution was obtained. This moment is
related to the intensity of the non Gaussian noise, and is
given by

Dng = 〈ξ2〉 =
2Dw

τ(5 − 3q)
, (14)

that diverges for q ≥ 5/3. For τng, the correlation time of
the process ξ(t), that was defined in detail in [13], it was
not possible to find an analytical expression. However, it
is known [13] that for q → 5/3 it diverges as (5 − 3q)−1.
In [13] τng vs. q was numerically calculated for the range
0.5 < q < 5/3. The following analytical approximation,
accurate within the indicated range, was found

τng =
2 τ

(5 − 3q)
[1 + 4(q − 1)2]. (15)

3.2 Current in the non Gaussian case

The Fokker-Planck equation for the present case, that is
the system described by the Langevin equation indicated
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by equation (4) with ξ(t) the non Gaussian noise, has a
known structure. After applying the effective Markovian
approximation as exploited in [13,15,17], such an equation
has the form

∂tP (x, t) = ∂x[A(x)P (x, t)] +
1
2
∂2

x[B(x)P (x, t)], (16)

where

A(x) =
V ′
eff

A1(x) + A2(x)
(17)

with

A1(x) =
1 − (τ/2Dw)(q − 1)V ′2

eff

1 + (τ/2Dw)(q − 1)V ′2
eff

A2(x) = τV ′′
eff [1 + (τ/2Dw)(q − 1)V ′2

eff ];

and

B(x) = Dw

[
[1 + (τ/2Dw)(q − 1)V ′2

eff ]2

B1(x) + B2(x)

]2

(18)

with

B1(x) = τV ′′
eff

[
1 + (τ/2Dw)(q − 1)V ′2

eff

]2

B2(x) =
[
1 − (τ/2Dw)(q − 1)V ′2

eff

]
.

The prime indicates a derivative respect to x.
The corresponding stationary solution of the indicated

Fokker-Planck equation is [22]

P st(x) =
e−φ(x)

NS(x)

∫ x+L

x

du
eφ(u)

S(u)
, (19)

with N a normalization constant, and

φ(x) = −
∫ x

0

du
R(u)
S2(u)

, (20)

where S(x) =
√

B and R(x) = −A − 1
2S S′. Then, using

equations (7), as (8) and (9) we can obtain the current J .

4 Results

In what follows we present several results for the case of
submitting the system to a non Gaussian noise, mainly
restricting ourselves to the range 0.5 < q < 1.5, which
is the range where our evaluation is, in principle, valid.
In all cases, except we indicated something different, we
adopted τng = 0.01π, A = 1, l = 1, Ω = 0.5, Ur = 0.16
and Ub = 0.2512.

In Figure 4 we show the dependence of J on q, for
different values of Dng. Looking at the left part of the
picture, we identify the curves, from top to bottom, with
the values Dng = 0.02, 0.038, 0.06, 0.07, 0.085, 0.1 and
0.13. The entanglement between the dependence on q and
Dng is apparent. For low values of Dng (Dng ∼ 0.02) the
behavior of J corresponds to an initial plateau for q <

Fig. 4. Net current J vs. q, for the range .5 < q < 1.5. Look-
ing at the left part of picture, we identify from top to bottom
Dng = 0.02, 0.038, 0.06, 0.07, 0.085, 0.1 and 0.13. Other pa-
rameters are: τng = 0.01π, A = 1, l = 1, Ur = 0.16 and
Ub = 0.2512.

1 and a fast (step like) decrease for q > 1. When Dng

increases (Dng � 0.06), J(q) adopts a bell’s shape, with
a maximum that shifts to larger values of q for increasing
Dng. It is worth noting that for large values of Dng, the
relevant values for the current will only occur when q takes
values within the indicated bell-like region.

As in previous studies on the effect of non Gaussian
noise on other systems [13–17] we conclude that the ob-
served change of behavior is associated with the process
ξ(t), that is with the departure from Gaussian behavior
(q = 1) and the associated changes in Pq(ξ). As indicated
before, for q < 1 there is a cut-off that prevents that ξ(t)
reaches large values, while for q > 1 ξ(t) can reach very
large values. For small values of Dng it is expected that
the current J(q) will not be very sensitive to such a cut-
off, as the probability for ξ(t) to reach those cut-off values
is very small. In opposition, for large values of Dng we
expect that J(q) becomes highly sensitive to the cut-off.
It seems to be the case as J varies very slowly with q (for
q < 1) when Dng is small, while for large values of Dng

just the opposite occurs.
However, for q > 1, it is the tail of the spd that mainly

contributes to build the current [17]. As indicated above,
for q < 1 (that is, for the case without tail), and large
values of Dng, J drastically decreases when q decreases.
Let us select one of the curves for J with a bell shape,
and look into the spd for values of q below, at, and above
of the maximum of that curve. Such analysis is shown in
Figure 5. We have chosen Dng = 0.085, q = 0.94 (be-
low), q = 1.2 (at the maximum) and q = 1.4 (above). We
observe that for the case of the maximum, the spd is sym-
metric with two peaks at both ends of the space period.
However, when departing from such “optimal” condition,
the spd looses its symmetry. In one hand, when q is at the
left of the maximum (q = 0.94) a new peak emerges at the
central zone of the period. On the other hand, when q is
to right of the maximum, there are two peaks that arise
between the previously indicated ones. In both cases, the
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Fig. 5. Stationary probability distribution P st for q below, at,
and after of maximum J ’s value, with Dng = 0.085 and: dot
line for q = 0.94, solid line for q = 1.2 and dash line for q = 1.4.
Other parameters are: τng = 0.01π, A = 1, l = 1, Ur = 0.16
and Ub = 0.2512.

prize of these additional peaks is that the spd decreases
at both ends, indicating a reduction of J . The same be-
havior was also observed in all cases where J(q) adopts
a bell’s shape. We also compare the spd behavior for the
case when J(q) has a step-like shape, and note that for
values of q within the plateau, the spd is like the one cor-
responding to the case of the maximum of J(q) (Fig. 3,
for q = 1.2), while for values of q beyond the step, the spd
is analogous to the one corresponding to a value of q lo-
cated at the right of the maximum (q = 1.4). It seems that
the current reaches a maximum when one feet follows the
other, and their separation is kept constant, and equal to a
period. We have also analyzed the Gaussian case (q = 1)
for different values of Dng, with results that essentially
reproduces those of Figure 5. In short, for small Dng the
curves are analogous to those obtained for large q (having
four peaks), while for large Dng the shapes resembles the
ones for small q (having three peaks).

Figure 6 depicts J(t) — the current before its time av-
eraging — as function of time, for a fixed Dng and different
values of q. It is apparent that the current adopts both,
positive and negative values along the period of the exter-
nal forcing. We observe that for q < qmax (where J(qmax)
reaches its largest values) there is a balance between pos-
itive and negative current’s values yielding, in average, a
small net current. When q increases, the negative values of
the current reduces, the indicated balance is also reduced,
and the net current increases. For even larger values of q
(q > qmax), the positive value of the current is reduced,
while the negative one tend to zero, and the net current
decreases.

We finally analyze the system’s behavior with τng.
Firstly, we observed that inside the studied range, J varies
almost linearly with τng. Since the corresponding slope
change its sign with q and Dng, we choose to look into the
behavior of dJ/dτng. Hence, in Figure 7 we show dJ/dτng

vs. q for different values of Dng, while in Figure 8 we show
dJ/dτng vs. Dng for different values of q. The sensitivity

Fig. 6. J(t), the current before the time averaging, vs. t, for
Dng = 0.085 and different values of q’s. Adopting as reference
the left part of the figure, from top to bottom we have q = 0.3,
1., 1.2, 1.4 and 1.55. Other parameters are: τng = 0.01π, A = 1,
l = 1, Ur = 0.16 and Ub = 0.2512.

Fig. 7. dJ/dτng vs. q for different Dng . Considering the left
part of the figure, we identify from top to bottom, Dng = 0.1,
0.05, 0.038, 0.03 and 0.02. Other parameters are: τng = 0.01π,
A = 1, l = 1, Ur = 0.16 and Ub = 0.2512.

of dJ/dτng against variations of q and Dng is apparent,
and the changes in the slope’s sign are clearly seen.

5 Conclusions

In line with some recent work [13–17], we have here ana-
lyzed the effect of a colored and non Gaussian noise over
the kinesin ratchet model introduced in [11,12]. As was
discussed in [13], there are strong experimental evidences
that noise sources within biological systems can not be in
general Gaussian [23]. This fact gives strong support to
the study of the effect of non Gaussian noises within a
biological motivated context.
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Fig. 8. dJ/dτng vs. Dng for different values of q: squares
q=0.52, circles q=0.85, triangles q=1.015, diamonds q=1.125,
stars q=1.235 and crosses q=1.4. Other parameters are: τng =
0.01π, A = 1, l = 1, Ur = 0.16 and Ub = 0.2512.

In order to make an almost analytical treatment, we
have here exploited a mean-field like approach, that shows
a nice agreement when it is tested against known re-
sults [11,12] for the Gaussian case (q = 1). Hence, we can
trust the results we have obtained when varying the pa-
rameter q. For the adopted form of noise, such variation
offers the possibility of analyzing the departure (q �= 1)
from the Gaussian behavior (q = 1).

When analyzing the dependence of the current J on
Dng and q, we have confirmed the existence, for a fixed
value of q, of a maximum or “optimal” current as function
of Dng. What is new, is that for fixed Dng, there is also an
optimal value of q yielding a maximum value of the cur-
rent. More, in general such a value corresponds to a non
Gaussian situation (q �= 1). Such a result could be under-
stood from the behavior of the spd for different values of
q, as well as from the current’s time dependence (that is,
before the time averaging). Regarding the dependence of
J on τng, we have seen that it is linear. However, analyzing
its slope (dJ/dτng) it becomes apparent the possibilities
of even changing the sign of such a slope varying both, q
for fixed Dng, or Dng for fixed q.

The indicated results show us the richness of behav-
ior that we can found when departing from the Gaussian
situation. It is apparent that those results could be of rele-
vance not only for biological studies, but for technological
applications as well. This point was discussed in general
in [16], and particularly for the case of ratchets in [17].
From a technological point of view, such a noise source
offers a variety of forms of controlling and/or optimizing
the transport process.

Clearly, the exploitation of an approach like the one
used in [12], based in a coordinate separation, could offer
a more transparent and better description of this system’s
physics. In addition a numerical validation of the whole
approach is required. Also, another aspect that requires
further analysis is the case when 2l is non-commensurate

with the unit cell of the ratchet potential. All these aspects
will be the subject of forthcoming work [24].
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